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Abstract 

 

In this study, the fourth order homogeneous partial differential equation (PDE) governing the free vibrations of Euler-Bernoulli 

beams on Winkler foundation with prismatic cross-sections was solved using the finite Fourier sine integral transformation 

method. Euler-Bernoulli beam theory was used to model the beam while Winkler foundation model was used for the foundation. 

The beam of length l was assumed to be simply supported at the ends x = 0, and x = l. The PDE was decoupled by the assumption 

of harmonic vibration. Application of the finite Fourier sine integral transformation on the decoupled equation resulted in the 

transformation of the problem to an algebraic eigenvalue problem. The condition for non-trivial solutions resulted to the 

characteristic frequency equation which was expressed in terms of a non-dimensional frequency parameter .n  The frequency 

equation which was observed to be the exact frequency equation obtained in the literature using the Navier series method, was 

solved to obtain the non-dimensional frequencies. Numerical values of the non-dimensional frequencies were computed for the 

case where 44 1, = l = 1, and for n = 1, 2, 3, 4, 5. It was found that exact values of the non-dimensional frequencies were obtained 

using the present method. 

 

Keywords: Fourier sine transform method, Euler-Bernoulli beam, Winkler foundation, Natural frequencies, Characteristic 

(frequency) equation. 

 

1. Introduction 

 

The problem of beams resting on elastic foundations is 

commonly encountered in the analysis and design of the 

foundations of buildings, highways and airport runways, 

railways, retaining walls and of geotechnical structures in 

general [1-4]. In the mathematical formulation of the 

problems of beams resting on elastic foundations, the beam 

theories that have been used include: the Euler-Bernoulli 

theory [5], Timoshenko theory [4], and refined/shear 

deformable theories [6]. Models of elastic foundations that 

have been used are: the Winkler one parameter model [7, 8], 

the two parameters models (Borodich-Filonenko, Vlasov, 

Hetenyi, and Pasternak) [9, 10, 11], three parameter models 

[12], multi-parameter models and the elastic continuum 

models. 

 

Winkler foundation model is the simplest and most 

frequently used model. The model assumes that the 

subgrade/foundation reaction at any point is directly 

proportional to the beam deflection at the point. These results  

 

in a model that has discontinuity in deflection at the unloaded 

parts of the soil, in violation of the results of the theory of 

elasticity. However, despite the shortcoming, the Winkler 

model has been commonly used due to the mathematical 

simplicity of the resulting formulation [13, 14]. This paper is 

focused on the Euler-Bernoulli beam theory to model the 

beam and the Winkler model for the foundation. The 

fundamental assumptions of the Euler-Bernoulli beam theory 

used in this work are:  

 

• The beam is long relative to its depth and width. 

• Stresses perpendicular to the beam length are much 

smaller than those parallel and can be ignored. 

• The beam cross-section is constant along its 

longitudinal axis and varies smoothly. 

• The beam cross-section has a longitudinal plane of 

symmetry. The resultant of the transverse loads 

acting on each section lies on that plane. The support 

conditions are also symmetric about this plane. 

• Transverse deflections and rotations of the beam are 

so small that the small deflection equations of strain-

displacement apply. 

• Beam material is isotropic and linear elastic. 

• Plane sections originally normal to the longitudinal 

axis remain plane and normal to the deformed 
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longitudinal axis after bending. This is called the 

normality condition. 

 

Dynamic analysis of Euler-Bernoulli beam on Winkler 

foundation problems is an important aspect of structural and 

geotechnical investigation, and the natural frequencies of free 

vibration obtained are useful in that context. The 

determination of the natural frequency of free vibration and 

the associated mode shapes is important in vibration isolation 

problems. The natural vibration analysis of beams resting on 

elastic foundations have been extensively studied by many 

scholars; including Raftoyiannisi et al [15], Coskun et al [16], 

Öztürk et al [17], Öztürk and Coskun [18], Lai et al [19], 

Thambiratnam and Zhuge [20], Blevins [21] and Mohanta et 

al [22].  

 

Lai et al [19] used the finite element method based on the 

exact displacement shape functions to derive solutions for the 

free vibrations of uniform prismatic beams resting on uniform 

elastic foundations. De Rosa [4] determined the natural 

vibration frequencies of Timoshenko beams resting on two-

parameter elastic foundations. Matsunuga [9], assumed power 

series expansion of the displacement components and derived 

a set of equations of one-dimensional higher order theory of 

deep elastic beam-columns resting on elastic foundations by 

using the Hamilton’s principle. Chen [5] studied the vibration 

of a beam resting on an elastic foundation by using the 

differential quadrature element method (DQEM). Balkaya et 

al [3] determined the natural frequencies of a pipeline 

modeled as a uniform beam resting on a Winkler and 

Pasternak soil by using the differential transform method. 

The methods that have been used to solve the dynamic beam 

on elastic foundation problem are the: Homotopy 

perturbation method, variational iteration method, differential 

quadrature element method (DQEM), differential transform 

method (DTM) and differential quadrature method (DQM). 

 

2. Theoretical Framework / Governing Equation 

 

The governing differential equation of equilibrium of 

Euler-Bernoulli beams resting on Winkler foundation is given 

by: 

 
4 2

4 2

( , ) ( , )
( , ) ( , )

w x t w x t
EI kw x t A p x t

x t

 
+ +  =

 
     (1) 

 

For 0 x l   
 

where E is the Young’s modulus of elasticity of the beam, I 

is the area moment of inertia of the beam about the neutral 

axis,  is the mass density of the beam, A is the cross-

sectional area of the beam, k is the modulus of the Winkler 

foundation, p(x, t) is the externally applied excitation force, 

w(x, t) is the time dependent deflection function, t is the time 

variable, x is the longitudinal axis of the beam and l is the 

span of the beam. 

 

The problem considered in this study is the Euler-Bernoulli 

beam with prismatic cross-section resting on Winkler 

foundation where the beam is simply supported at the ends x 

= 0, and x = l. The natural frequencies of vibration of the 

beam are to be determined using the Fourier series integral 

transform method. 

 

3. Methodology 

 

The Fourier sine transform method is an integral 

transformation technique that employs a sinusoidal kernel, 

and the method has been found to be ideally suited to 

boundary value problems with Dirichlet boundary conditions. 

Due to the simply supported ends of the Euler-Bernoulli 

beam at x = 0, and x =l, the boundary conditions are of the 

Dirichlet type, making the Fourier sine transform method 

ideal as a mathematical tool for the research. The 

disadvantage of the Fourier sine transform method is the 

difficulty in dealing with boundary value problems with non 

– Dirichlet or Neumann boundary conditions. In such cases, 

the Fourier sine kernel may be combined with polynomials 

which are constructed to satisfy aproiri the boundary 

conditions. Alternatively, the Fourier cosine transform 

method may be used if the ends are clamped. The simplicity 

of the Fourier sine transform method in solving boundary 

value problems with the Dirichlet type boundary conditions is 

a powerful attraction of the method. 

 

Another advantage of the method is its ability to obtain 

closed from mathematical solutions to the boundary value 

problem. 

 

For free (natural) vibrations, the excitation force, 

 

0( , )p x t =                        (2) 

 

The governing differential equation of equilibrium reduces 

to the homogeneous equation: 

 
4 2

4 2
0

w w
EI kw A

x t

 
+ +  =

 
  (3) 

 

For harmonic vibrations, 

 

( , ) ( ) ni t
w x t W x e


=   (4) 

 

Then, the governing equation becomes: 
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Where the primes denote derivatives with respect to x. 

44
k

EI
 =                           (7) 

 

For non-trivial solutions, 

 
2

44 0( ) ( )iv nA
W x W x

EI
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 

 (8) 

Let 
2

2 44n
n

A

EI

 
=             (9) 

 

Then, 

 
4 24 1 0( ) ( ) ( )iv

nW x W x+  − =   (10) 

 

We apply the finite Fourier sine transformation to obtain 

 

( )4 2

0

4 1 0( ) ( ) ( ) sin

l
iv

n

n x
W x W x dx

l


+  − =  (11) 

 

4. Results 

 

The linearity property of the Fourier sine transformation is 

used to obtain: 

 

4 2

0 0

4 1 0( )sin ( ) ( )sin

l l
iv

n

n x n x
W x dx W x dx

l l

 
+  − =       (12) 

 

Further simplification yields: 

 
4

4 2

0 0

4 1 0( )sin ( ) ( )sin

l l

n
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0
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l

n
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l
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where Wn is the Fourier transform of w(x) 

 

Then Equation (13) could be expressed as an algebraic 

problem, thus: 

 
4

4 24 1 0( )n n n

n
W W

l

 
+  −  = 

 
  (15) 

 

Simplifying, we obtain the eigenvalue-eigenvector 

problem: 

 
4

4 24 1 0( )n n

n
W

l

  
+  − =  

  
  (16) 

For non-trivial solutions, 

 

0nW     (17) 

 

Then, the characteristic (frequency) equation  become: 

 
4

4 24 1 0( )n

n

l

 
+  −  = 

 
            (18) 

Solving, 

 
4
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2

2

4

4

4
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n

n
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Let 44 1 =    (21) 

 

l = 1             (22) 

 

The natural frequencies become: 

 
4 1 2

1 1 9 920135636/( ) . = +  =   (23) 

 

( )
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2

2
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/
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4 1 2

3 1 3 88 83206839/( ( ) ) . = +  =    (25) 

 
4 1 2

4 1 4 157 9168367/( ( ) ) . = +  =  (26) 

 
4 1 2

5 1 5 246 7421364/( ( ) ) . = +  =  (27) 

 

The numerical solutions agree with the solutions obtained 

by Chen [5] who solved the same problem using the 

differential transform method (DTM). 

 

The same exact solution can be obtained by using the 

method of Fourier series. In the method of Fourier series, the 

dynamic deflection function w(x, t) is assumed for harmonic 

vibrations as a Fourier sine series of the form 

 

1

( , ) sin exp( )n n
n

n x
w x t W i t

l



=


=        (28) 

where Wn is the Fourier coefficient of w(x). n = 1, 2, 3, … 

. We observe that w(x, t) satisfies the Dirichlet boundary 

conditions since w(x = 0, t) = 0 and w(x = 0, t) = 0. 

 

Then, the governing equation becomes 
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Simplification yields: 
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4

2

1
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ll


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=
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This becomes an eigenvalue – eigenvector problem. 

 

For non-trivial solutions to Equation (31) 
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we have: 0.W   Then, 

 
4

2 0n

n
EI k A

l

 
+ −   = 

 
     (32) 

 
4 2

0nAn k

l EI EI

  
+ − = 

 
   (33) 

 
4 2

44 0nAn

l EI

  
+  − = 

 
   (34) 

 
4 2

4

4
4 1 0

4

nAn

l EI

   
+  − =   

   
   (35) 

 

( )
4

4 24 1 0n

n

l

 
+  −  = 

 
             (36) 

 

Where 
2
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n
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
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Solving, we obtain an identical equation obtained earlier as 

Equation (20) using the Fourier sine transform method: 

 
1/24

4

1
1

4
n

n

l

  
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For 44 1, =  and 1l =  identical results are obtained for 

n  for n = 1, 2, 3, 4, 5, … 

5. Discussion 

 

The finite Fourier sine transformation has been 

successfully used in this work to solve the differential 

equation of equilibrium governing the free vibrations of 

Euler-Bernoulli beams with prismatic cross-sections.  The 

governing equation solved was Equation (3), a homogeneous 

partial differential equation with the dynamic deflection 

function w(x, t), as the unknown independent variable. The 

assumption of harmonic vibrations meant the dynamic 

deflection function could be expressible in variable-separable 

form as Equation (4). This led to a decoupling of the partial 

differential equation to obtain Equation (6). The conditions 

for nontrivial solution resulted in the ordinary differential 

equation in terms of W(x) given by Equation (8) or Equation 

(10). The finite Fourier sine transformation was then applied 

to Equation (10) to obtain Equation (11). The linearity 

property of the finite Fourier sine transformation was used to 

express the transformed equation as Equation (12). 

Simplification of the transformed equation resulted to 

Equations (13) and (16). The transformed Equation (16) was 

observed to be an algebraic eigenvalue problem. The 

conditions for nontrivial solutions resulted in the 

characteristic (frequency) equation given by Equation (18), 

which was solved to obtain the dimensionless frequency 

parameter n  as Equation (20). Numerical values of the 

dimensionless frequency parameter n  were obtained for 

44 1, =  and l = 1 and calculated for n = 1, 2, 3, 4, 5. The 

calculated values were given as Equations (23) – (27). It was 

observed that the calculated values were exactly the same as 

the exact solutions for the same problem found in the 

literature. 

 

6. Conclusions 

 

From the study, the following conclusions are made: 

 

• The finite Fourier sine integral transformation being 

a linear transformation is ideal for the solution of 

linear partial differential equations of fourth order 

which governs the free harmonic vibration of Euler-

Bernoulli beam of prismatic cross-section. 

• The beam’s simply supported ends x = 0, and x = l 

satisfy the Dirichlet boundary conditions and offer 

simplifications to the evaluation of the finite Fourier 

sine transforms of the derivatives of the unknown 

independent variable W(x). 

• The application of the finite Fourier sine 

transformation simplifies the problem of free 

harmonic vibration of simply supported Euler-

Bernoulli beams with prismatic cross-section from a 

differential equation to an algebraic eigenvalue 

equation. 

• The characteristic frequency equations obtained for 

the free harmonic vibration of prismatic Euler-

Bernoulli beams with simply supported ends (x = 0, 

and x = l) are the exact frequency equations obtained 

by other researchers in the literature, using Navier’s 

series and energy minimization methods. 
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• The frequency obtained for the case considered 

where 44 1, =  l = 1 and n = 1, 2, 3, 4, 5 … are the 

exact frequencies obtained in literature by other 

scholars. 

• The solutions obtained by the finite Fourier sine 

transform method has been validated by the classical 

Fourier sine series method, which gave identical 

results for the problem considered. 

• The Fourier sine transform method yielded closed 

from matheatical solutions for the natural 

frequencies of vibration of Euler-Bernoulli beam 

resting on Winkler foundation. 
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